If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45=14x-x^2
We move all terms to the left:
45-(14x-x^2)=0
We get rid of parentheses
x^2-14x+45=0
a = 1; b = -14; c = +45;
Δ = b2-4ac
Δ = -142-4·1·45
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4}{2*1}=\frac{10}{2} =5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4}{2*1}=\frac{18}{2} =9 $
| -20.7=u/7-3.2 | | -7x2=-147 | | 73-x=191 | | (x-10)2-6=10. | | 1=3x+6-4x | | 46=(5u+11) | | -1b+5=1 | | 27=y-9 | | -17x-1-10x+17=-32x+1 | | F(1)=-3x^2+2x+5 | | 4x+3+3x=-4 | | 1=0.17x+100 | | 2x2+2x-5=0. | | 1=0.17x=100 | | 6v=7−v | | 5x^2-40x=61 | | 4(3x-^)=72 | | -8z−4=-9z | | -3(4r-2)+9=-14r+15+2r | | -8−10d=-8d | | y=-6(-1)-3 | | -2=3x+5+2 | | y=-6(-5)-3 | | -4y=-5y−10 | | 10+0.2x=16 | | -5m=-4m+6 | | 2(1-6m)=98 | | -13+8r=-3(r-3) | | n=-9+10n | | 2(1+6k)=86 | | 16=5x+8 | | -3=x+5+5+3x |